Tentukan kompresibilitas dari gas ideal dan gas nyata!
Gas Ideal
Kita tahu [link]
$$ k = -\dfrac{1}{V} \left( \dfrac{\partial V}{\partial P}Â \right)_{\!T} \label{k}\tag{k}$$
$$ PV = nRT $$
Entah kenapa persamaan sakti ini penting banget dalam termodinamika, jangan dilupain ok 😉 apalagi \(-1\) nya
$$ f(P, V, T) = \left( \dfrac{\partial P}{\partial V} \right)_{\!T}
\left( \dfrac{\partial V}{\partial T}Â \right)_{\!P}
\left( \dfrac{\partial T}{\partial P}Â \right)_{\!V} = -1 \label{z}\tag{0}$$
dari situ (sekreatif mungkin)
$$ \left( \dfrac{\partial P}{\partial V}Â \right)_{\!T} = \dfrac{
\left( \dfrac{\partial T}{\partial V}Â \right)_{\!P}}{
\left( \dfrac{\partial T}{\partial P}Â \right)_{\!V}}$$
dibalik biar sama seperti 1, karena butuhnya \(\left(\dfrac{V}{P}\right)_{\!T}\) jadi
$$ \left( \dfrac{\partial V}{\partial P}Â \right)_{\!T} = -\dfrac{
\left( \dfrac{\partial V}{\partial T}Â \right)_{\!P}}{
\left( \dfrac{\partial P}{\partial T}Â \right)_{\!V}}\label{a}\tag{1}$$
untuk \(Â V = \dfrac{nRT}{P} \)
$$ \left( \dfrac{\partial V}{\partial T}Â \right)_{\!P} = \dfrac{nR}{P} $$
untuk \( P = \dfrac{nRT}{V} \)
$$ \left( \dfrac{\partial P}{\partial T}Â \right)_{\!V} = \dfrac{nR}{V} $$
substitusi ke persamaan \ref{a}
$$
\begin{align}
\require{cancel} \left( \dfrac{\partial V}{\partial P}Â \right)_{\!T} & = -\dfrac{
\dfrac{\cancel{nR}}{P}}{
\dfrac{\cancel{nR}}{V}} \\
& = -\dfrac{V}{P}
\end{align}
$$
subtitusi ke persamaan \ref{k}, sabar ya…
$$
\begin{align}
k & = -\dfrac{1}{\cancel{V}} \left( -\dfrac{\cancel{V}}{P} \right) \\
& = \dfrac{1}{P}
\end{align}
$$
DONE! Cara ini juga berlaku untuk \(\alpha\) atau \(\beta\) didapatkan
$$
\alpha = \dfrac{1}{T} \qquad \beta= \dfrac{1}{T}
$$
Gas Nyata
kita tahu pada gas nyata digunakan persamaan Van Der Waals (n=1)
$$ \left( P + \dfrac{a}{V^2} Â \right)\left(V-b\right) = RT $$
langkah persamaan sakti (\ref{z})sama seperti diatas, skip aja ok :p
untuk \(Â V = \dfrac{RT}{\left( P + \dfrac{a}{V^2} Â \right)} + b\)
$$ \left( \dfrac{\partial V}{\partial T}Â \right)_{\!P} =
\dfrac{R}{\left( P + \dfrac{a}{V^2} Â \right)} $$
untuk \( P = \dfrac{RT}{\left(V-b\right)} – \dfrac{a}{V^2}\)
$$ \left( \dfrac{\partial P}{\partial T}Â \right)_{\!V} =
\dfrac{R}{\left(V-b\right)} $$
substitusi ke persamaan \ref{a}
$$
\left( \dfrac{\partial V}{\partial P}Â \right)_{\!T} = -\dfrac{
\dfrac{\cancel{R}}{\left( P + \dfrac{a}{V^2} Â \right)}}{
\dfrac{\cancel{R}}{\left(V-b\right)}} \\
\quad\quad\quad = -\dfrac{\left(V-b\right)}{\left( P + \dfrac{a}{V^2} Â \right)}
$$
subtitusi ke persamaan \ref{k}
$$
\begin{align}
k & = -\dfrac{1}{\cancel{V}} \left(-\dfrac{\left(V-b\right)}{\left( P + \dfrac{a}{V^2} Â \right)} \right) \\
& = -\dfrac{\left(V-b\right)}{V\left( P + \dfrac{a}{V^2} Â \right)} \\
& = \dfrac{V\left(V-b\right)}{PV^2 + a}
\end{align}
$$
Leave a Reply